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Little is known about the nature or extent of everyday variability in voice quality. This paper describes

a series of principal component analyses to explore within- and between-talker acoustic variation and

the extent to which they conform to expectations derived from current models of voice perception.

Based on studies of faces and cognitive models of speaker recognition, the authors hypothesized that a

few measures would be important across speakers, but that much of within-speaker variability would

be idiosyncratic. Analyses used multiple sentence productions from 50 female and 50 male speakers of

English, recorded over three days. Twenty-six acoustic variables from a psychoacoustic model of voice

quality were measured every 5 ms on vowels and approximants. Across speakers the balance between

higher harmonic amplitudes and inharmonic energy in the voice accounted for the most variance

(females¼ 20%, males¼ 22%). Formant frequencies and their variability accounted for an additional

12% of variance across speakers. Remaining variance appeared largely idiosyncratic, suggesting that

the speaker-specific voice space is different for different people. Results further showed that voice

spaces for individuals and for the population of talkers have very similar acoustic structures.

Implications for prototype models of voice perception and recognition are discussed.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5125134
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I. INTRODUCTION

What makes your voice yours? Individuals’ voices, their

“auditory faces” (Belin et al., 2004), provide significant clues

to personal identity along with information about talkers’

long-term physical, psychological, and social characteristics,

based on the variability these factors introduce into voice.

Because even small changes in emotion, social context, and

physiologic state can cause significant variability in voice, no

speaker ever says the same thing in exactly the same way

twice, whether quality is intentionally or incidentally manipu-

lated (see Kreiman and Sidtis, 2011, for extended review).

However, the extent and nature of within-speaker variability

in voice are unknown, despite the fact that the acoustic signal

serves as input to the perceptual system, which must be able

to cope with this variability in order to achieve a stable per-

cept and/or recognition. Information about acoustic variability

is thus critical for formulating models of voice quality and

talker recognition. This paper describes a series of analyses

exploring within- and between-talker acoustic variation and

the extent to which they conform to expectations derived

from current models of voice perception.

Although listeners can cope to some extent with acoustic

variability to establish stable identity percepts, across voices

and listeners many studies have shown that within-speaker var-

iability makes voice recognition and discrimination challeng-

ing tasks. In forensic contexts, for example, an earwitness’s

ability to identify a person from a voice lineup diminishes

when vocal variability is introduced. Listeners often fail to

reliably discriminate between talkers when exposed to voices

disguised using falsetto, hyponasality, creaky voice, or whis-

pering (Hirson and Duckworth, 1993; LaRiviere, 1975; Reich

and Duke, 1979; Reich et al., 2005; Wagner and K€oster,

1999); and changes in a speaker’s emotional state substan-

tially impair listeners’ abilities to recognize (Saslove and

Yarmey, 1980; cf. Read and Craik, 1995) or discriminate

among talkers (Lavan et al., 2019). Within-talker variability

can also interfere with a listener’s ability to judge that sam-

ples come from the same (rather than different) talkers. In a

“telling voices together” task, listeners frequently judged that

exemplars from a single talker came from multiple speakers

when samples were drawn from different speaking situations

with varied interlocutors (Lavan et al., 2018).

Facial recognition poses similar challenges to viewers,

who must cope with changes in lighting, expression, and ori-

entation in order to identify or discriminate among faces

(Hill and Bruce, 1996; O’Toole et al., 1998; Patterson and

Baddeley, 1977). Because similarities exist in voice and face

processing (Stevenage et al., 2018; Yovel and Belin, 2013),

recent findings from the face perception literature may pro-

vide insight into mechanisms for coping with acoustic voice

variability. In particular, facial identity learning improves

when viewers are exposed to highly but naturally varying

sets of images of one person (for example, with changes in

orientation or emotion) during training (Kramer et al., 2017;

Murphy et al., 2015; Ritchie and Burton, 2017). This

suggests that variation in the same face provides useful

person-specific information and thus is important in identity
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learning and perception (Burton, 2013; Burton et al., 2016;

Jenkins et al., 2011). To our knowledge, no parallel studies

have appeared for voice learning, but some classic findings

suggest acoustic variability may also provide important

information to listeners. These studies have reported that

increasing phonological length (i.e., the number of individ-

ual phonemes; Schweinberger et al., 1997) or acoustic dura-

tion (Bricker and Pruzansky, 1966; Cook and Wilding, 1997;

Legge et al., 1984) of the voice samples leads to more accu-

rate vocal identity processing, due to the increased variety in

speech sounds available in longer stimuli or the longer dura-

tion (or both), which provide listeners with added articula-

tory and acoustic variability (cf. e.g., Lively et al., 1993, for

similar effects in learning phonological categories).

Taken together, these studies of faces and voices suggest

that listeners need to learn how a particular voice varies in

order to recognize it accurately and efficiently. At first glance,

this claim appears consistent with prototype-based models of

the cognitive and neural processes underlying voice identity

perception (Latinus and Belin, 2011a; Lavner et al., 2001;

Papçun et al., 1989; Yovel and Belin, 2013). In these

accounts, listeners encode and process voice identity in rela-

tion to a population prototype, which is a context-dependent

“average-sounding” voice, defined as a central tendency in a

distribution of exemplars (Patel, 2008) that resides at the cen-

ter of a multidimensional acoustical “voice space.” Each

voice is further represented in terms of its deviations from

that group prototype, stored as a unique “reference pattern”

for that identity and passed on for further analysis (Latinus

and Belin, 2011b; Papçun et al., 1989). On further consider-

ation, however, it becomes apparent that these models are

underspecified with respect to two important issues. First, the

relationship between between-talker variability in quality and

the population prototype is unknown. Although it is com-

monly assumed that prototypes are statistical averages

derived from multiple samples of a given talker’s voice (e.g.,

Latinus and Belin, 2011a; Maguinness et al., 2018), to our

knowledge no data exist about how much detail (and what

kind of detail) about quality is actually needed to specify the

prototype, and how much is reserved as “deviations” from the

prototype. Second, the nature (or even the existence) of simi-

lar reference patterns for individual talkers and the way in

which within-talker variation affects formation of these pat-

terns have not to our knowledge been addressed, although

such patterns would seem to be essential for the formation of

stable representations of voices and thus for voice recognition

(Lavan et al., 2018).

Existing cognitive and neuropsychological models of

voice perception and recognition have not been fully

exploited to generate clear hypotheses about the nature and

extent of even between-talker acoustic variability in voice,

which has been studied far more than within-talker variabil-

ity. As discussed above, these models posit the existence of

an acoustic voice space organized around a population proto-

type, so that voices are encoded and later recognized in

terms of their distance from the prototype and the manner in

which they deviate from this (presumed) population average.

Because voice production and perception have co-evolved, it

follows that if the perceptual models are correct, then there

should be some acoustic features that consistently explain

significant between-talker acoustic variance across all the

talkers in a population. These features would characterize

the central category member for the population of talkers,

consistent with the existence of a perceptual space organized

around a prototype, and would also specify the location of

each voice in the space with respect to the prototype.

Remaining differences between voices should be idiosyn-

cratic, so that the features that differentiate pairs of talkers

depend on the precise acoustic information involved in each

comparison (e.g., Kreiman and Gerratt, 1996). This would

be consistent with what has been found for faces

(Maguinness et al., 2018; Stevenage et al., 2018; Yovel and

Belin, 2013), although we cannot assume that faces and voi-

ces are perceived in similar ways at all processing stages.

Predictions are less clear for variation within a single

talker across utterances, although studies of variation in

faces may again offer some clues. Principal component anal-

yses examining how images of a face vary across different

photographs of that person (Burton et al., 2016) showed that

the first few components (left-to-right head rotations, angle

to camera, the direction of lighting; and changes in expres-

sion like smiles, eye movements, mouth opening, or lip

rounding during speech) emerged consistently across indi-

viduals and accounted for the most variance in different pho-

tos of the same person. Dimensions appearing in later

principal components (from the fourth onward) did not gen-

eralize well from one person to another, so that some fea-

tures were shared across faces, and some dimensions of

variability were idiosyncratic to specific faces. Given the

many similarities between face and voice processing in iden-

tity perception (see Yovel and Belin, 2013, for review), this

suggests that voice spaces for individual talkers should be

similarly structured. If “prototypes” for individual talkers are

characterized by the same features across talkers, then these

features would naturally characterize a population prototype

against which each individual voice could be assessed.

Results from our preliminary studies (Keating and

Kreiman, 2016; Kreiman et al., 2017) are also consistent with

the hypothesis that voice spaces for individual talkers are

structured similarly to population voice spaces. In those

experiments, we used linear discriminant analyses to identify

the acoustic features that maximally distinguished a large

number of individual voices. A small number of variables

[F0, F4, the root mean square energy calculated over five

pitch pulses (energy), the relative amplitudes of the first and

second harmonics (H1–H2), and the amplitude ratio between

subharmonics and harmonics (SHR)] proved important for

distinguishing both male and female voices, but these

accounted for only about 50% of the acoustic variance in the

data, the remaining variance being explained by different var-

iables depending on the particular voices being compared.

In the present study we focused on the acoustic attrib-

utes that characterize different voice samples from individ-

ual talkers, as well as on the population of talkers as a

whole. Following Burton et al. (2016), we used principal

component analysis to assess voice variation both within and

across speakers. The components that emerge from such

analyses can be thought of as forming dimensions of an
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acoustic space specific to a given voice, in which that voice

varies, in contrast to the discriminant analysis approach in our

previous work. Based on Burton et al. (2016) and on proto-

type models of voice processing, we hypothesized that a few

common acoustic dimensions would consistently emerge

from analyses of individual speakers as explaining the most

within-talker acoustic variability, but that much more of what

characterizes vocal variability within a speaker would be idio-

syncratic. Because voice quality is inherently dynamic, we

tested the above hypothesis against multiple sentence produc-

tions from 100 native speakers of English, using a set of

acoustic measures that combine to completely specify voice

quality (Kreiman et al., 2014). This approach contrasts with

previous studies of vocal acoustic spaces (e.g., Baumann and

Belin, 2010; Murry and Singh, 1980; Singh and Murry,

1978), which used limited sets of steady-state vowels.

Finally, we compared the dimensions characterizing acoustic

variability across speakers to those characterizing within-

speaker acoustic variability, also in contrast to previous work.

II. METHOD

A. Speakers and voice samples

In this experiment, the voices of 50 female and 50 male

speakers were drawn from the University of California, Los

Angeles Speaker Variability Database (Keating et al., 2019).

All were native speakers of English, similar in age (F:

18–29, M: 18–26), with no known vocal disorder or speech

complaints, and all were UCLA undergraduate students at

the time of recording. As noted previously, virtually nothing

is known about acoustic differences between different popu-

lations of speakers. For this reason, in this initial study we

opted to control for possible systematic differences between

populations by studying a homogeneous group, so that we

would be able to unambiguously attribute acoustic differ-

ences to within- or between-speaker factors, without the

added complication of differences between populations.

Recordings were made in a sound-attenuated booth at a sam-

pling rate of 22 kHz using a Bruel & Kjaer 1
2

in. microphone

(model 4193) securely attached to a baseball cap worn by

the speaker.

The database provides significant within- and between-

speaker variability. Speakers were recorded on three different

days and performed multiple speech tasks including reading,

unscripted speech tasks, and a conversation. In order to con-

trol for variations due to differences in phonemic content or

emotional state across talkers, this initial study used record-

ings of five Harvard sentences (IEEE Subcommittee, 1969;

Table I), read twice each day for a total of six repetitions per

sentence over three recording sessions on different days.

Variability reported in this paper was calculated across sen-

tence productions (different repetitions, sentences, and days),

and its scope is limited to the reading task.

B. Measurements and data processing

Acoustic measurements were made automatically every

5 ms on vowels and approximants (i.e., /l/, /r/, /w/) excerpted

from each complete sentence, using VoiceSauce (Shue et al.,
2011). Following the psychoacoustic model of voice quality

described in Kreiman et al. (2014), acoustic parameters

included fundamental frequency (F0); the first four formant

frequencies (F1, F2, F3, F4), the relative amplitudes of the first

and second harmonics (H1*–H2*) and the second and fourth

harmonics (H2*–H4*); and the spectral slopes from the fourth

harmonic to the harmonic nearest 2 kHz in frequency

(H4*–H2kHz*) and from the harmonic nearest 2 kHz to the

harmonic nearest 5 kHz in frequency (H2kHz*–H5kHz).

Values of harmonics marked with “*” were corrected for the

influence of formants on harmonic amplitudes (Hanson and

Chuang, 1999; Iseli and Alwan, 2004). Our preliminary studies

(Keating and Kreiman, 2016; Kreiman et al., 2017) showed

substantial correlations between the relative amplitude of the

cepstral peak prominence (CPP) in relation to the expected

amplitude as derived via linear regression (Hillenbrand et al.,
1994) and the four measures of the shape of the inharmonic

(noise) source spectrum included in the psychoacoustic model,

so for simplicity CPP was used as the only measure of spectral

noise and/or periodicity in these analyses.

Several additional modifications were made to adapt the

model to automatic measurement of continuous speech.

Formant dispersion [FD, often associated with vocal tract

length (Fitch, 1997)] was calculated as the average difference

in frequency between each adjacent pair of formants (cf.

Pisanski et al., 2014 for related measures). Amplitude was

measured as the root mean square energy calculated over five

pitch pulses (energy). Period doubling, which is not included

in the original psychoacoustic model but is common in the

speech of UCLA students, was measured as the amplitude

ratio between subharmonics and harmonics (SHR; Sun,

2002). Finally, dynamic changes in voice quality were quanti-

fied using moving coefficients of variation ðmoving CoV
¼ moving r=moving lÞ for each parameter. In choosing this

measure, we assumed that listeners do not generally rely on

exact pitch and amplitude contours or on the precise timing of

changes in spectral shape when telling speakers apart,

although such details can be salient when discriminating

among speech tokens from a single speaker. This approach

has the added advantage that quantifying the amount of vari-

ability is straightforward, whereas there is no obvious way to

quantify and objectively compare exact patterns of acoustic

variation. Table II provides a complete list of variables.

Data frames with missing or obviously erroneous

parameter values (for example, impossible 0 values) were

removed. Next, for each speaker, the obtained values of each

acoustic variable were normalized with respect to the overall

minimum and maximum values from the entire set of voice

samples from males or females, as appropriate, so that all

TABLE I. Reading materials.

Harvard sentences

A pot of tea helps to pass the evening.

The boy was there when the sun rose.

Kick the ball straight and follow through.

Help the woman get back to her feet.

The soft cushion broke the man’s fall.
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variables ranged from 0 to 1. Then, for each sentence pro-

duction, a smoothing window of 50 ms (10 observations)

was used to calculate moving averages and moving coeffi-

cients of variation for the 13 variables during that sentence.

Across speakers, the above winnowing and post-processing

steps resulted in about 515k data frames (F: 266k, M: 249k).

C. Principal component analysis

In principal component analysis (PCA), variables that are

correlated with one another but relatively independent of other

subsets of variables are combined into components, with the

goal of reducing a large number of variables into a smaller set

which is thought to reflect internal structures that have created

the correlations among variables. As moderate correlations

were expected between variables, we employed an oblique

rotation to create the simplest possible factor structure for our

data (Cattell, 1978; Thurstone, 1947). Analyses were con-

ducted separately for each speaker (within-speaker analyses)

and for the combined male and female speakers as groups

(combined speaker analyses). For within-speaker analyses,

PCA was performed separately on each individual talker’s

acoustic measurement data (26 variables: moving averages for

13 variables þ moving coefficients of variation for the same

13 variables) to reveal the dimensions of the acoustic variabil-

ity space for that particular voice. For combined speaker analy-

ses, PCA was performed separately on the acoustic data (all 26

variables) from females and males, pooling the 50 speakers’

data in each analysis. PCs were restricted to the resulting facto-

rial solutions with eigenvalues greater than 1, ensuring that

each retained factor accounted for an interpretable amount of

variance in the data (Kaiser, 1960). Results were also visually

confirmed with Scree plots (Cattell, 1966). Following usual

practice, variables with loadings (weights) at or exceeding 0.32

on a given component were considered to form a principal

component (Tabachnick and Fidell, 2013).

III. RESULTS

Although all 26 acoustic variables were entered simulta-

neously into the analyses, for brevity and clarity results are

first described with respect to five categories, following

Kreiman et al. (2019): (i) F0; (ii) formant frequencies (F1,

F2, F3, F4, FD); (iii) harmonic source spectral shape

(H1*–H2*, H2*–H4*, H4*–H2kHz*, H2kHz*–H5kHz); (iv)

spectral noise (CPP plus energy and SHR); and (v) the coef-

ficients of variation for all measures (CoVs) (Table II).

Detailed analyses follow these summary descriptions. We first

present results from within-speaker PCA analyses, followed

by analyses of the combined male and female speakers.

A. Within-speaker PCAs: Common dimensions and
speaker-specific patterns

Analyses for individual speakers resulted in between six

and nine principal components (PCs) having eigenvalues

greater than 1. Most speakers showed seven (31/100 speakers)

or eight (59/100 speakers) extracted PCs. These components

accounted for 65%–74% (M¼ 69%) of the cumulative acous-

tic variance for individual female speakers and 62%–73%

(M¼ 68%) for individual male speakers (see Appendix A for

details). While all individual PCs were included in subsequent

analyses, because the higher order PCs accounted for very

small amounts of acoustic variability (Appendix A), only the

first six are reported in detail.

We first counted the number of times each acoustic cate-

gory appeared in a within-speaker solution, cumulated across

the 50 speakers in each group. Figure 1 shows the distribution

of variables with respect to weight in the first six components.

The first component accounted for 17%–23% (M¼ 20%) and

20%–25% (M¼ 22%) of the variance for females and males,

respectively. For both females and males, the combined coef-

ficients of variation emerged most frequently in PC1 across

individual speakers (blue bars in Fig. 1).

Sub-analyses of factors contributing to the first PC are

shown in Figs. 2 and 3. For most speakers, PC1 represented the

combination of variability (measured by CoVs) in source

spectral shape (F: 41/50 speakers, M: 46/50 speakers) and in

spectral noise (F: 45/50 speakers, M: 47/50 speakers), which

usually emerged together (F: 40/50 speakers, M: 44/50 speak-

ers) (Fig. 2). An additional analysis (Fig. 3) revealed that across

speakers all four CoV measures of source spectral variability

(H1*–H2*, H2*–H4*, H4*–H2kHz*, H2kHz*–H5kHz)

emerged in the first component, but H2kHz*–H5kHz predo-

minated; spectral noise variability was mostly related to coeffi-

cients of variation for CPP.

For most of the remaining speakers (F: 10/50 speakers,

M: 4/50 speakers), formant frequency CoV was the most

representative variable in the first component. Last, two

male speakers showed source spectral shape alone as the pri-

mary variable associated with this PC.

PC2 accounted for an average of 12% of acoustic variabil-

ity, for both male and female speakers (ranges: females

¼ 10%–16%; males¼ 10%–14%.). For both females and

males, formant frequencies (F: 50/50 speakers, M: 41/50

speakers) and/or their CoVs (F: 21/50 speakers, M: 30/50

speakers) emerged most frequently as the second PC (Fig. 1).

Sub-analyses are shown in Fig. 4; bars in this figure include

both formant frequencies and coefficients of variation for each

formant. Formant dispersion (F: 37/50 speakers, M: 28/50

speakers) and F4 (F: 35/50 speakers, M: 28/50 speakers)

appeared most important and frequently appeared together as a

pair across speakers.

PC3–PC6 combined to account for an average across

voices of 29% (females) and 28% (males) of the acoustic

variance in the data (see also Appendix A), but in contrast to

the first two PCs, this variance was largely idiosyncratic, and

TABLE II. Acoustic variables.

Variable categories Acoustic variables

Pitch F0

Formant frequencies F1, F2, F3, F4, FD

Harmonic source spectral shape H1*–H2*, H2*–H4*, H4*–H2kHz*,

H2kHz*–H5kHz

Inharmonic source/spectral noise CPP, energy, SHR

Variability Coefficients of variation

for all acoustic measures
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no particular acoustic category predominated (Fig. 1). For

PC3–PC6, the distributions of the five variable categories and

their weights overlapped highly, for both male and female

speakers, reflecting differences across voices in the amount of

variance explained by each measure. As shown in Fig. 1, most

of the variables are approximately evenly distributed across

PCs, with the exception of F0 (red bars), which emerged only

sporadically. In other words, the component in which each

variable appeared differed across individuals, ranging from

PC3 to PC6 (�nine) across individuals; and no single compo-

nent accounted for substantial variance.

Notably, F0 and/or its CoV only emerged in the first two

components for 4/100 speakers (two female and two male).

Among those four speakers, only one (male) speaker showed

F0 as the most weighted variable within the PC (red bar in

PC1, Fig. 1, bottom panel).

FIG. 1. Distribution of acoustic parameters plotted (stacked histogram) against the rotated component loadings (weight) for the first 6 PCs. Upper panel:

female speakers. Lower panel: male speakers.
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1. Interim summary and discussion

To summarize, variability (measured by coefficients of

variation) in source spectral shape and spectral noise, especially

in H2kHz*–H5kHz and CPP, accounted for the most acoustic

variability within individual speakers. Across speakers, the next

most frequently emerging variables were means and variability

for formant dispersion and F4. The first two PCs were largely

shared across voices, and together accounted for slightly more

than half of the explained variance in the underlying acoustic

data (32%–34% total). The remaining PCs differed widely

across voices, and cumulatively accounted for slightly less than

half of the explained variance (28%–29% total).

FIG. 2. (Color online) Distribution of variability parameters in PC1 plotted against the rotated component loadings (weight) for female speakers (upper panel)

and male speakers (bottom panel). “CoV” ¼ coefficient of variation.

FIG. 3. (Color online) Distribution of spectral source variability parameters in PC1 plotted against the rotated component loadings (weight) for female speak-

ers (upper panel) and male speakers (bottom panel). “CoV” ¼ coefficient of variation.
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The general picture that emerges from these results is

one of surprisingly similar acoustic organization across talk-

ers. This pattern of a common core of variables shared by

virtually all voices, accompanied by unique deviations from

that central pattern, is consistent with what might be required

as input to a recognition/perception system organized around

prototypes, and suggests that such a model applies to

between-talker variability as well as to within-talker acoustic

variability. The analyses in Sec. III B test this hypothesis.

B. Between-speaker group PCA: “General” voice
spaces

As described above, a second set of PCAs examined the

structure of the acoustic space for the combined groups of

female and male speakers. Eight PCs were extracted for both

speaker groups, accounting for 67% of the cumulative vari-

ance for female speakers and 66% for male speakers. Not

surprisingly, given how consistent results were across indi-

vidual speakers, patterns of acoustic variability in these

multi-talker spaces largely mirrored the patterns found

within speakers. Figure 5 shows the group results, and details

of the analyses are included in Appendix B. The first PC

weighted most heavily on variability (measured by CoVs)

in source spectral shape and spectral noise, accounting for

18% and 20% of variance across females and males, respec-

tively. As in the within-speaker analyses, coefficients of var-

iation for H2kHz*–H5kHz and CPP were the most

important components of this PC.

The second component accounted for 11% of acoustic

variance in female voices and corresponded to formant fre-

quencies (F4, FD, F3). For males, spectral slope in the

higher frequencies (H4*–H2kHz*, H2kHz*–H5kHz) and

F2 accounted for 10% of variance in the combined acoustic

data. The opposite was observed for the third component: an

additional 10% of the variance was accounted for by spectral

shape in the higher frequencies and F2 for females; formant

frequencies accounted for 9% of the variance in male voices.

F0 only emerged in later components (PC5 for females, PC4

for males) with noise and spectral shape variables, and

accounted for very little variance in the data (6% for females,

7% for males). CoVs for F0 and noise measures emerged in

PC6 for female speakers and PC7 for male speakers and

accounted for 5% of acoustic variance across speaker groups.

IV. DISCUSSION

Acoustic variability is a key factor in models of voice

perception and speaker identification, because perceptual

processes must cope with variable input in order to achieve

perceptual constancy. Using PCA, this study identified voice

quality measures that accounted for perceptually relevant

acoustic variance both within individual speakers and for

pooled groups of speakers. Unlike previous studies of vocal

variation, which typically used sustained vowels produced in

isolation by relatively small numbers of talkers, this study

included multiple complete sentences from large numbers of

female and male talkers, and thus reflected vocal variation

within and across utterances and multiple recording sessions.

As hypothesized, results of analyses of within-speaker

acoustic variability paralleled findings for individual faces

(Burton et al., 2016), in that a small number of components

emerged consistently across talkers. For both females and

males, variability in higher-frequency harmonic and inhar-

monic energy (often associated with the degree of perceived

breathiness or brightness; Samlan et al., 2013) combined to

account for the most variance within talkers. These two mea-

sures generally emerged as a pair within the same PC,

FIG. 4. (Color online) Distribution of formant frequency parameters in PC2 plotted against the rotated component loadings (weight) for female speakers

(upper panel) and male speakers (bottom panel). Each figure reflects values derived from both moving averages and moving coefficients of variation for each

formant frequency measure. “FD” ¼ formant dispersion.
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consistent with the manner in which they covary in control-

ling the perceived levels of noise in a voice (Kreiman and

Gerratt, 2012). The second PC was consistently associated

with higher formant frequencies and with the average inter-

val between formant frequencies (i.e., formant dispersion).

These measures have been associated with speaker identity

(e.g., Ives et al., 2005; Smith et al., 2005) and with vocal

tract length and perception of speaker size (Fitch, 1997;

Pisanski et al., 2014), but appear to be relatively independent

of vowel quality (Fant, 1960).

However, an equal amount of within-talker acoustic variabil-

ity was in fact specific to individual voices. The talker-specific

dimensionality of the derived voice spaces differed across differ-

ent talkers, and different measures, different combinations of mea-

sures, or different orderings of the same sets of measures emerged

in PCs after the first two. This suggests that each individual

“auditory face” is indeed unique, allowing for the formation of

person-specific patterns/representations for a particular voice.

Similar dimensions also emerged in the first three compo-

nents from group PCAs combining the 50 male and 50 female

FIG. 5. Acoustic parameters emerging in 8 PCs for female speaker group (upper panel) and male speaker group (bottom panel). Variables within each PC are

ordered from the highest absolute value of rotated component loadings (weight) to the lowest value. See also Appendixes B 1 and B 2 for variance accounted

for by each PC. “CoV” ¼ coefficient of variation.
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speakers into separate group analyses, with the balance

between higher-frequency harmonic and inharmonic energy

again accounting for the most variability. Frequencies of higher

formants, formant dispersion, and mid-frequency measures

(near the F2 range) emerged in the second and third compo-

nents, with only differences in order of emergence across

groups. As with analyses of individual voices, later compo-

nents included very different measures across the two groups.

Although this finding may appear trivial given the homogene-

ity of the individual results, in fact there is no a priori reason

why individual solutions should coincide as they did, and no a
priori reason why individual and group acoustic spaces should

be so similar. However, prototype models seemingly require

that acoustic spaces for individual talkers and population

spaces be structured similarly, so that listeners can evaluate the

location of each voice with respect to the population prototype.

This result thus provides strong evidence consistent with such

models.

Two limitations of this work must be noted. First, acous-

tic measures were based on read speech, not on spontaneous

vocalization or conversation. This has the advantage of con-

trolling for variations due to differences in phonemic content

or emotional state across talkers, while still sampling vari-

ability across utterances and recording sessions within talk-

ers, but clearly does not represent the full range of acoustic

variability that occurs within a talker in an average day’s

phonation. The UCLA Speaker Variability Database

(Keating et al., 2019) also includes a recording of an

unscripted telephone conversation for each talker, and analy-

ses are underway to determine how well the present findings

extend to more natural utterances. Second, the sample of

speakers studied was restricted with respect to speakers’

ages (a limitation of the database) and native languages (a

design decision). For this initial study, we view both of these

limitations as necessary: No information is available about

differences in acoustic variability across different popula-

tions of speakers, and even speculation is lacking with regard

to how many and what kinds of populations exist, so no basis

exists for distinguishing variability within a population from

variability across populations. The methods presented here

offer a means of investigating this question, which will be

important for further development of models of voice per-

ception. Similarly, the manner (if any) in which within- and

between-speaker acoustic variability interact with linguistic

factors such as tone and phonemic voice quality differences

remains unknown, again making it desirable to control this

factor in the present study. A systematic investigation of the

interactions among these factors is also underway.

The fact that F0 did not emerge early among the princi-

pal components extracted for either the within-speaker or

group analyses is counter-intuitive, given how important F0

is to many aspects of voice perception (e.g., Baumann and

Belin, 2010; Kreiman et al., 1992; Murry and Singh, 1980;

Singh and Murry, 1978; Walden et al., 1978; see Kreiman

and Sidtis, 2011, for review). The lack of a major F0 compo-

nent in our results may be an artefact of our normalization

technique, which was based on acoustic ranges but did not

take into account differences in perceptual sensitivity to dif-

ferent variables. However, we note that previous studies

reporting an F0 factor have used similar normalization pro-

cedures and steady-state vowels (e.g., Baumann and Belin,

2010). We additionally note that F0 may vary in limited

ways during reading, reducing its contributions to both

within- and between-speaker acoustic differences. However,

F0 did emerge as important for discriminating among voices

for both females and males in our previous studies using lin-

ear discriminant analysis (LDA) and the same voice stimuli

(Keating and Kreiman, 2016; Kreiman et al., 2017), making

it unlikely that our results are due to the use of read speech

in this study. (Future studies using spontaneous speech will

test this possibility directly.) Finally, LDA and PCA differ in

the nature of the questions they ask: LDA provides insight

into the variables that maximally separate stimuli, while

PCA can reveal the structure of the acoustic space in which

the stimuli vary, somewhat analogous to “telling voices

apart” versus “telling voices together” (Lavan et al., 2018).

These different emphases may partially explain differences

in the importance of F0 across experiments. In any event,

this apparent discrepancy between acoustic structure and

perceptual data requires further consideration.

These results have implications for current prototype-

based models of voice processing (Kreiman and Sidtis,

2011; Lavner et al., 2001; Yovel and Belin, 2013), which as

previously noted are underspecified with respect to within-

person variability in voice. Perceptual processes must be

adapted to the acoustic input they receive, so understanding

the structure of acoustic voice spaces can provide insight

into why and how voice perception functions as it does.

Converging evidence from different scientific disciplines has

shown that assessing who is speaking utilizes both featural

and pattern recognition strategies. Perceiving unfamiliar voi-

ces requires both reference to a population prototype and

evaluation of the manner in which the voice deviates from

that prototype, while familiar voices are recognized using

holistic pattern recognition processes (Schweinberger et al.,
1997; Van Lancker et al., 1985; see Kreiman and Sidtis,

2011, for review). Our results suggest that reference patterns

for individual speakers are mainly computed over the bal-

ance of higher-frequency harmonic versus inharmonic

energy in the voice and over formant dispersion, and are

located in a group voice space with similar structure.

However, this shared structure accounts for only a fraction

of either within- or between-speaker acoustic variability,

with most variability being idiosyncratic. Thus, it may be

misleading to think of prototypes as “average tokens” com-

puted across complete acoustic signals. Our results suggest

instead that they are specified by a very small number of

acoustic attributes.

These results further suggest that for unfamiliar voices,

“deviations from the prototype” include two different kinds

of variability: differences within talkers from their own pro-

totype, and deviations of representations for individual

speakers from a group prototype. Listeners who are unfamil-

iar with the voices should be adept at assessing the second

kind of variability (“telling voices apart”; Lavan et al.,
2018), given that the same acoustic features appear to char-

acterize both group and individual prototypes. However, lis-

teners who are unfamiliar with a talker’s voice should have
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difficulty in associating different tokens of a single talker’s

voice with each other (“telling voices together”; Lavan

et al., 2018), given their unfamiliarity with the specific idio-

syncrasies that characterize that talker’s overall acoustic var-

iability. The present data allow us to make specific acoustic-

based predictions about which voice samples from different

talkers will be confused and which samples from the same

talker will fail to be correctly recognized as coming from the

same talker. These predictions will be explored in our ongo-

ing work.

Finally, these results suggest that learning to recognize a

voice involves learning the specific manner(s) in which that

voice varies around its prototype—in other words, variability

in voice may be essential to learning, in the same way that it

is essential for learning faces (Kramer et al., 2017; Ritchie

and Burton, 2017) and categories of any kind. Previous stud-

ies have suggested that familiar voices are unique patterns,

such that a given feature may be essential for recognizing

one voice, but irrelevant for another (Lattner et al., 2005;

Schweinberger, 2001; Van Lancker et al., 1985). The present

data are consistent with this view; but familiarity with a

voice involves much more than knowledge of acoustic vari-

ability. Mental representations of familiar voices are linked

to faces (e.g., Schweinberger, 2013), and hearing a familiar

voice activates a plethora of personal information about the

speaker, possibly organized in “person identity nodes” (see

Kreiman and Sidtis, 2011, section 6.6, and Barton and

Corrow, 2016, for review). Thus, the manner in which voices

become familiar, and even what familiarity entails, remain

unknown, although the present data shed some light on pos-

sible mechanisms of acoustic learning.

V. CONCLUSION

Principal component analysis identified measures that

characterize variability in voice quality within and between

speakers and provided evidence for how voice spaces—indi-

vidually and generally—may be formulated with reference

to acoustic attributes. Among the large array of vocal param-

eters available for each individual voice, a few components

(the balance between high-frequency harmonic and inhar-

monic energy in the voice, and formant dispersion) emerged

consistently across talkers, but most within-speaker acoustic

variability in voice was idiosyncratic. Results further

showed that the measures that were frequently shared by

individual talkers also characterized voice variation across

talkers, suggesting that individual and “general” voice

spaces have very similar acoustic structures. This aligns

well with the input seemingly required by prototype models

of voice recognition. Our results have implications for unfa-

miliar voice perception and processing, specifically provid-

ing evidence for the nature of reference patterns and

deviations from “average-sounding” across voices, in indi-

vidual and universal voice spaces. Going forward, it will be

essential to consider how listeners organize these identified

measures of within-person variability into a personal iden-

tity and how that relates to perceived differences between

talkers.
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APPENDIX A: AVERAGE PERCENTAGE OF ACOUSTIC
VARIANCE EXPLAINED BY EACH PC AS A FUNCTION
OF THE NUMBER OF PCS, FOR FEMALE AND MALE
SPEAKERS. NUMBERS IN PARENTHESES INDICATE
THE NUMBER OF SPEAKERS FOR WHOM THAT
NUMBER OF PCS WAS EXTRACTED

PC

9 PCs

(F: 8/50, M: 1/50)

8 PCs

(F: 29/50, M: 30/50)

7 PCs

(F: 13/50, M: 18/50)

6 PCs

(F: 0/50, M: 1/50)

1 F: 19% (17%–21%),

M: 21%

F: 20% (18%–23%),

M: 22% (20%–25%)

F: 20% (18%–23%),

M: 22% (20%–25%)

F: N/A,

M: 22%

2 F: 12% (10%–13%),

M: 10%

F: 12% (11%–16%),

M: 12% (10%–14%)

F: 13% (11%–14%),

M: 12% (10%–13%)

F: N/A,

M: 13%

3 F: 10% (8%–11%),

M: 9%

F: 10% (9%–11%),

M: 10% (8%–11%)

F: 10% (8%–11%),

M: 10% (9%–12%)

F: N/A,

M: 10%

4 F: 8% (7%–8%),

M: 7%

F: 8% (7%–9%),

M: 7% (6%–9%)

F: 8% (7%–9%),

M: 7% (6%–9%)

F: N/A,

M: 7%

5 F: 6% (5%–6%),

M: 7%

F: 6% (5%–7%),

M: 6% (5%–7%)

F: 6% (5%–7%),

M: 6% (5%–7%)

F: N/A,

M: 6%

6 F: 5% (5%),

M: 4%

F: 5% (5%–6%),

M: 5% (5%–6%)

F: 5% (5%–6%),

M: 5% (4%–6%)

F: N/A,

M: 5%

7 F: 5% (4%–5%),

M: 5%

F: 4% (4%–5%)

M: 4% (4%–5%)

F: 4% (4%–5%),

M: 4% (4%–5%)
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APPENDIX B: PCA PATTERN MATRICES FOR FEMALE
(1) AND MALE (2) SPEAKER GROUP ANALYSES

1. PCA pattern matrix for female speaker group
analysis. “CoV” 5 coefficient of variation

PC Variable group Variables Weight

Variance

explained

1 Spectral shape variability H2kHz*–H5kHz CoV 0.82 18%

Noise variability CPP CoV 0.76

Spectral shape variability H4*–H2kHz* CoV 0.59

H2*–H4* CoV 0.57

2 Formant frequencies F4 0.90 11%

FD 0.83

F3 0.70

3 Spectral shape H4*–H2kHz* �0.85 10%

Formant frequencies F2 �0.76

Spectral shape H2kHz*–H5kHz 0.65

Formant frequency variability F2 CoV 0.62

4 Spectral shape H2*–H4* 0.83 8%

Formant frequency F1 0.76

5 Spectral shape H1*–H2* �0.73 6%

F0 F0 �0.53

Spectral shape variability H1*–H2* CoV 0.52

Noise SHR 0.42

6 Noise variability SHR CoV �0.71 5%

F0 variability F0 CoV �0.68

Noise variability Energy CoV �0.57

Noise CPP 0.50

7 Formant frequency variability FD CoV �0.93 5%

F4 CoV �0.90

F3 CoV �0.52

F1 CoV �0.43

8 Noise energy 0.79 4%

2. PCA pattern matrix for male speaker group analysis.
“CoV” 5 coefficient of variation

PC Variable group Variables Weight

Variance

explained

1 Spectral shape variability H2kHz*–H5kHz CoV 0.81 20%

Noise variability CPP CoV 0.76

Spectral shape variability H1*–H2* CoV 0.69

H2*–H4* CoV 0.65

H4*–H2kHz* CoV 0.56

2 Spectral shape H4*–H2kHz* �0.82 10%

Formant frequencies F2 �0.69

(Continued)

PC Variable group Variables Weight

Variance

explained

Spectral shape H2kHz*–H5kHz 0.66

Formant frequency variability F2 CoV 0.63

3 Formant frequencies F4 0.97 9%

FD 0.92

F3 0.54

4 F0 F0 �0.73 7%

Noise Energy �0.57

Spectral shape H2*–H4* 0.57

5 Spectral shape H1*–H2* �0.79 6%

Noise SHR 0.69

CPP 0.52

6 Formant frequencies F1 0.90 5%

Formant frequency variability F1 CoV �0.35

7 F0 variability F0 CoV 0.70 5%

Noise variability SHR CoV 0.69

energy CoV 0.46

8 formant frequency variability FD CoV 0.96 4%

F4 CoV 0.93

F3 CoV 0.53
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